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Surface-layer similarity in turbulent circular 
Couette flow 
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(Received 29 July 1983 and in revised form 1 March 1984) 

Smith & Townsend’s (1982) experimental data on circular Couette flow arc 
re-examined in the framework of surface-layer similarity theory. Surface-layer 
similarity of horizontally stratified shear flow is shown to have its counterpart in a 
narrow-gap Couette flow between concentric cylinders. Smith & Townsend’s data of 
mean angular momentum and mean-velocity profiles in a region near a cylinder lend 
support to the applicability of Monin-Obukhov similarity to circular Couette flow. 
Only for flows of very high Reynolds numbers is a region of logarithmic variation 
of mean profiles found close to  the cylinder wall. Because of curvature effects on the 
flow, the mean profiles deviate from the logarithmic profile as distance from the 
cylinder wall increases. For flows of sufficiently low Reynolds number, but still very 
high Taylor number, no logarithmic profile seems to exist; instead, profiles in the 
viscous region and in the outer region are connected to each other by a ‘ free-convection 
(rotation) ’ profile. From Smith & Townsend’s data the velocity field is not observed 
to follow the prediction of ‘ free-convection ’ similarity ; however, the ‘free-convection ’ 
profile is found in the distribution of mean angular momentum. 

1. Introduction 
Smith & Townsend (1982) report measurements that have been made of a Couette 

flow between rotating cylinders. In  their study, mean-velocity profiles and velocity 
spectra are reported over an extensive range of Taylor numbers which exceed the 
critical Taylor number by factors of 104-106. This was for the inner cylinder rotating 
and the outer one fixed. Regarding the mean-velocity profiles a t  sufficiently high 
Taylor numbers, a large part of the wall layer was apparently unaffected by flow 
curvature, and a logarithmic distribution of mean velocity similar to that detected 
in channel flow was found. Smith & Townsend compare circular Couette flow and 
stratified flow with each other, and they argue that a t  distances from the wall smaller 
than a characteristic length, analogous to the Monin-Obukhov length of stratified 
flows, the flow is affected strongly by inertial forces, thus revealing logarithmic 
profiles. Although Smith & Townsend suggest application of Monin-Obukhov 
similarity to circular Couette flow, they do not formulate an analogous surface-layer 
similarity for Couette flow. 

I n  atmospheric turbulence near the Earth’s surface a considerable deviation from 
logarithmic profiles is observed a t  heights above ground much smaller than the 
Monin-Obukhov length (e.g. Monin & Yaglom 1971). We suppose that this trend may 
be seen from Smith & Townsend’s data also, hence we have re-examined the data 
on mean velocity and mean angular momentum. 

In $2  surface-layer similarity as originally proposed by Obukhov (1946) and by 
Monin & Obukhov (1954) is extended to  circular Couette flow. Section 3 contains the 
application of the ‘ free-convection ’ scaling to circular Couette flow. 
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2. Surface-layer similarity 
Surface-layer similarity of horizontally stratified fluids states that  the mean 

temperature and wind fields depend only on the surface heat flux, a buoyancy 
parameter, the surface stress, and the height from the ground. By analogy, we 
suppose that the mean angular momentum and mean velocity fields in a circular 
Couette flow near a cylinder wall depend only on the flux G of angular momentum 
a t  the wall, a curvature parameter, the surface stress r and the distance r -  R, from 
the inner cylinder wall. 

Comparison of the governing equation of steady-state Couette flow between 
concentric cylinders of radii R, (inner cylinder) and R, (outer cylinder) with those of 
steady BQnard convection between horizontal planes suggests that  the term 2 U/r2  
is the analogue of the buoyancy parameter ag, where U is the mean velocity in the 
circumferential direction, a is the thermal expression coefficient of the fluid and g 
is the acceleration due to gravity (see the Appendix). Furthermore, where molecular 
viscosity can be neglected, we have that 

- 

0 = r2uw, ( 1 )  
- 
uw is the Reynolds stress. 

From the above set of four variables we find a velocity scale 

u* = ( T / P ) I  (2) 

( p  = fluid density), an angular-momentum scale 

M ,  = Jr2UWI: 

and a lengthscale 

(3) 

(4) 

The lengthscale L,  corresponds to the Monin-Obukhov length of stratified shear flow, 
where k is the von Karman constant. We choose the sign of L ,  such that a transport 
of angular momentum from the inner to the outer cylinder, indicating an unstable 
flow configuration, corresponds to a negative L,, while a transport of angular 
momentum from the outer to the inner cylinder, indicating a stable flow configuration, 
is associated with a positive L,. Analogous notation is used in boundary-layer 
meteorology. The curvature parameter 2U/r2  is assumed to be constant. In  fact, 
2 U/r2 is far from constant ; however, variation of this parameter in the surface layer 
is small compared with variation of 2U/rZ across the entire gap between cylinders. 
A typical or effective value is 2Um/Rt,  where Urn is defined as the mean value of 
UR;/r2 within the surface layer. Using (1)  and (4), we rewrite L,  as 

The length scale L ,  in the form (5) was already proposed by Smith & Townsend 
as the analogue of the Monin-Obukhov length. From Smith & Townsend’s 
data we estimate L,  to vary from L ,  z 1.3 ern (for Reynolds number 
Re = U,(R,-R,)/v = 50000; U, = peripheral velocity of inner cylinder, v = molec- 
ular viscosity) to L,  z 1.2 cm (for Re = SSOO), i.e. from L, / (R , -R , )  z 0.17 to 

From the theory of dimensional analysis it follows that any variable being 
non-dimensionalized in terms of u,, M , ,  L ,  and r-R, has to  be a function of 

L, / (R , -R , )  z 0.16. 
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( r -  R,)/L,. For dimensionless gradients of angular momentum and velocity in the 
surface layer of circular Couette flow we have that 

and that 

k(r  - R,) a( U ,  - U )  
u* ar 

k ( r  - R,) a( U, R, - Ur)  
M* ar = 3“(?) ( 7 )  

$ and are universal functions depending only on the non-dimensional distance 
from the inner cylinder. Similar equations can be obtained for the surface layer near 
the outer cylinder. 

I n  contrast with stratified shear flow, where we can regard temperature and 
velocity as independent quantities, the angul.ar momentum Ur and the velocity U 
of circular Couette flow are not independent. Moreover, the scaling parameters M ,  
and u* are not independent. M ,  and u* are related by 

M ,  = G; = lr2UW(r-Rl = 0)l: = IR;T//$ = U* R,. (8) 

Thus (6) and ( 7 )  can be used equivalently for scaling circular Couette flow data of 
mean velocity and angular momentum, and we can determine q5 from $ G ,  and vice 
versa. 

For the mean velocity to be finite, the difference between (6) and ( 7 )  

(i.e. the difference q5-$G) has to become small as distance from the cylinder wall 
becomes small. In  the limiting cases r -  R,+O and R,/R2+ 1 the flow approaches a 
neutral flow configuration in which curvature effects become negligible in comparison 
with shear effects, and in which (6) and (7 )  become identical. 

Figure 1 is a copy of Smith & Townsend’s data (figure 2 ( d )  in their paper). The 
straight line is given by 

where 

U,-U 1 r-R, =-In- 
u* k rO-Rl’ 

provides the link with Smith & Townsend’s notation. The von Karman constant k 
and the constant A are chosen so that k = 0.4 and A = 2. We have corrected Smith 
& Townsend’s figure 2 ( d ) ,  since unfortunately their figure contained an erroneous 
factor of 2 in the von Karman constant. Equation (10) can be found by integrating 
(6) and assuming q5 = 1 ; the case q5 = 1 corresponds to the neutral flow configuration. 
From figure 1 an increasing deviation from the logarithmic profile is seen for 
decreasing speed U of the inner cylinder and for increasing distance from the inner 
cylinder. We suppose shear effects on the flow to be dominant close to the cylinder 
wall, leading to a logarithmic profile ; while rotational effects become more important 
as distance from the inner cylinder incr’eases, causing a deviation from the logarithmic 
profile. Furthermore, for the three lowest Reynolds numbers no logarithmic profile 
seems to exist. 

It should be emphasized that the case of a neutral flow configuration in circular 
Couette flow is a somewhat different one from stratified shear flow. A circular Couette 
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FIGURE 1. Non-dimensional plot of circumferential mean velocity versus distance from the 
inner-cylinder wall. The straight line has a slope of ilk = 2.5. Different symbols refer to different 
peripheral speeds of the inner cylinder. (Data for figure 1 are taken from figure 2 ( d )  in Smith & 
Townsend (1982).) 
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PIGIJRE 2.  Non-dimensional plot of mean-velocity gradient versus distance from the inner-cylinder 
wall. The full line represents measurements in the atmospheric boundary layer by Dyer & Bradley 
(1982). For symbols see figure 1. 

flow in which curvature effects are negligibly small corresponds to a plane Couette 
flow, i.e. to a circular Couette flow for which RJR, + 1. Assuming a flow configuration 
in which the flux Q of angular momentum a t  the cylinder wall vanishes (as the flux 
of temperature does in a neutrally stratified shear flow) implies a vanishing surface 
stress. No logarithmic profile is expected for such a flow configuration. On the other 
hand, in circular Couette flow in which RJR,  < 1, a logarithmic profile is considered 
to be only an asymptotic profile in the limit of very high Reynolds number, and thus 
very high Taylor number Ta = [2(R2 - R,)/(R, + R,)] Re2; curvature effects on the 
flow do not become completely unimportant. 

Calculating the universal function q5, we take data from figure 1 .  Results are shown 
in figure 2.  The full line represents recent observations of dimensionless gradients of 
mean velocity in the atmospheric boundary layer by Dyer & Bradley (1982). Our 
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FIGURE 3. Non-dimensional plot of gradients of mean angular momentum versus distance from the 
inner-cylinder wall. The full line represents measurements of non-dimensional temperature 
gradients in the atmospheric boundary layer by Dyer & Bradley (1982). For symbols see figure 1 .  

calculations can be only a rough estimate on 4, since data are taken from Smith & 
Townsend's figure. However, our calculations indicate that circular-Couette-flow 
data follow the same trend as atmospheric data do: 4 decreases as instability 
increases. 

The non-dimensional gradient of angular momentum is calculated using data 
provided by Smith & Townsend (figure 1 ( b )  in their paper). Again, data presented 
in figure 3 seem to follow the trend observed in atmospheric data of non-dimensionless 
temperature gradients by Dyer & Bradley (1982). Our estimation also indicate qbG 
to be smaller than 4, the difference 4 - $G increasing with increasing dimensionless 
distance from the cylinder wall. 

3. ' Free-convection (rotation)' scaling 
Another interesting analogy between circular Couette flow and stratified shear flow 

similarity arises assuming the surface stress to become unimportant in comparison 
with rotational (buoyant) effects on the flow. I n  this case the mean angular 
momentum and mean velocity fields are assumed to depend only on the flux of 
angular momentum at the cylinder surface, the curvature parameter, and the 
distance from the cylinder wall. From this set of three variables we find a velocity 
scale 

U f  = r u w  

and an angular-momentum scale 
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We choose iW, rather than M ,  as a scale in order to emphasize effects of curvature 
on the flow. Both scales are chosen to  be similar to free-convection scales of stratified 
flow. The scales u,, uf and M,, Mf are related to each other by 

and 
r-R, 
- k C ,  

In  contrast with free-convection scaling in stratified shear flow, we do find a 
lengthscale L, given by 

(16) 
Mf L --. 

However, like M, and u*, the scales Mf and uf are not independent ; thus gradients 
of angular momentum and velocity scaled with iWf, r - R, and u,, r - R, respectively 
have to be constant. Therefore we can write 

f -  
Uf 

(17) 
k(r-R, )  a(Ur)  - k(r -R , )  8(Ur)  Mf 

M ,  ar M ,  ar M, 
-- 

k ( r - R , ) a ( U , - U )  - k(r- -R, )  a(U,-U) - 
u* ar Uf 8r U* 

Usually the state of free convection is associated with the limit of an infinitely large 
Monin-Obukhov length. But in the atmospheric boundary layer free-convection 
scaling seems to be applicable when heights above ground are of the order of the 
Monin-Obukhov length. We expect similar behaviour for circular Couette flow. I n  
fact, Smith & Townsend’s data indicate ( r -  R , ) / k L ,  to be of order unity or smaller 
throughout the surface layer. 

Equations (17)  and (18) seem to be inconsistent with each other, since we do not 
expect Ur - ( r -  Rl)-i and U - ( r -  Rl)+4 simultaneously. However, since flow a t  high 
Taylor number but low Reynolds number is associated with convective flow, and since 
the angular-momentum field in circular Couette flow corresponds to the temperature 
field in convective flow, we suppose the ‘free-convection’ scaling to be applicable to 
the distribution of angular momentum rather than to  that of velocity. 

Figure 4 is a logarithmic plot of data copied in figure 1 .  The dashed straight line 
has a slope of -ti. The full line represents the logarithmic profile. It can be seen that 
a significant region of logarithmic variation of velocity exists only for the flow of 
highest Reynolds number. A ‘ ( r  - R,)+j region ’ as expected from similarity arguments 
is not found in figure 4. Neither the logarithmic profile nor the ‘ free-convection ’ profile 
seems to fit data for Reynolds numbers less than 50000. 

In  figure 5 we have copied Smith & Townsend’s data on mean angular momentum 
(figure l ( 6 )  in their paper) using a logarithmic plot. The dashed straight line has a 
slope of -$. The full line represents the logarithmic profile. Obviously, only for the 
case of highest Reynolds number (Re = 50000) does a significant region of logarithmic 
variation of angular momentum exist. The region becomes considerably smaller as 
the Reynolds number decrease. No logarithmic variation is found for flows of 
Reynolds number less than Re = 20000. This is mentioned also by Smith & Townsend 
and is in agreement with earlier measurements by Taylor (1936). Instead, an extended 
‘ ( r  - Rl)-4 region ’ is observed which connects the outer layer in which Ur - const and 
the region dominated by viscous processes for which Ur - r - R, is expected. 
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FIGURE 4. Non-dimensional logarithmic plot of mean velocity versus distance from the inner-cylinder 
wall. The dashed line has a slope of + a .  The full line represents the logarithmic profile. For symbols 
see figure I .  (Data for figure 4 are taken from figure 1.) 

lo-* r-R, 10-1 

R,-R, 
FIGURE 5 .  Non-dimensional logarithmic plot of mean angular momentum versus distance from the 
inner-cylinder wall. The dashed line has a slope of -$. The full line represents the logarithmic profile. 
For symbols see figure 1 .  (Data for figure 5 are taken from figure 1 ( b )  in Smith & Townsend (1982).) 

4. Conclusion 
Our study demonstrates how surface-layer similarity of horizontally stratified 

shear flow can be applied to  Couette flow between concentric cylinders. Even the 
free-convection scaling is shown to have its counterpart in a narrow-gap Couette flow. 

Re-examination of data provided by Smith & Townsend lends support to the 
applicability of Monin-Obukhov similarity to circular Couettc flow : dimensionless 
gradients of mean velocity and mean angular momentum seem to be functions of a 
non-dimensional distance from a cylinder wall only. For flows of very high Reynolds 
number a region of logarithmic variation of mean velocity and mean angular 
momentum is found close to the cylinder wall. Because of curvature effects on the 
flow, mean-velocity and mean-angular-momentum fields deviate from the logarithmic 
profile as distance from the cylinder wall increases. 

The present study sheds some light on the engineering practice of fitting surface-layer 
data on mean velocity and mean angular momentum by a logarithmic profile only. 
For instance, Wang & Gelhaar (1970) find two von K k m a n  constants: k = 0.37 for 
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the surfacc layer near the outer cylinder, and Ic = 0.57 near the inner cylinder. This 
is in contradiction with surface-layer similarity, which considers the von Karman 
constant to be a universal constant. As mentioned above, the structure of the mean 
profile near a cylinder wall is more complicated. In  an unstable flow configuration, 
mean profiles bend less than a logarithmic profile ; therefore a ‘logarithmic data 
fitting ’ yields a higher von Karman constant. Furthermore, a purely logarithmic 
profile as in neutrally stratified shear flow cannot be experted in circular Couette flow. 

Couette flow of sufficiently low Reynolds number (Re < 20000 in Smith & 
Townsend’s experiment) but still high Taylor numbers corresponds to the case of 
vigorous, turbulent convection in stratified shear flow. For this case no logarithmic 
profile seems to exist; instead, profiles in the viscous region and in the outer region 
are connected to each other by a ‘free-convection (rotation)’ profile. From Smith & 
Townsend’s data no such profile can be found for the mean-velocity field ; however, 
the ‘free-convection’ profile is observed in the distribution of mean angular mo- 
mentum. Interestingly enough, in the atmospheric boundary layer a velocity profile, 
as predicted from simple free-convection scaling, has not yet been measurcd, whereas 
the temperature distribution is reported to  be close to the predicted profile (e.g. 
Businger 1973; Dyer & Bradley 1982). It could be argued that curvature influences 
the distribution of angular momentum stronger than that of velocity. From this, as 
the Reynolds number decreases, the onset of ‘ free-convection ’ is expected to be 
observed first in the distribution of angular momentum. Since Smith & Townsend’s 
experiment provides a set of careful measurements, we suggest an extension of this 
experiment to lower Reynolds number in order to explore the scaling of ‘free- 
convection’. In  addition i t  should be interesting to examine whether or not the 
‘(r-Rl)-4 region’ close to  the wall will be replaced by a ‘ ( r -Rl ) -I  region’, as 
predicted by Malkus (1979) for the limit of low Reynolds number but high Taylor 
number, and as observed by Townsend (1959) for laboratory convection. 

Furthermore, our study raises the question as to  why there is a rather abrupt 
change of profiles of mean angular momentum from Ur N ( r -Rl ) - i  to Ur - ronst 
(see figure 5). The next step in our investigation will be to ask whether Monin-Obukhov 
similarity will be applicable to a stable flow configuration, i t .  the inner cylinder 
stationary and the outer cylinder rotating. An additional, interesting investigation 
would be for a Couette flow with counter-rotating cylinders in which the gradient 
of angular momentum changes signs. 

Finally, it  should be understood that experiments on turbulent circular Couette 
flow are of particular value for understanding turbulence and transition to turbulence 
in stratified shear flow, since laboratory data or even atmospheric data of unstably 
stratified shear flow are difficult to obtain. 

This work was undertaken while the author was a t  the Department of Meteorology 
and Physical Oceanography, MIT. He wishes to thank Professor W. V. R. Malkus for 
constructive comments and discussions. 

Appendix 
In  steady-state Couette flow between concentric cylinders the equations for 

angular-momentum flux, for balance of mean-square angular-momentum fluctuations, 
and for balance of kinetic energy of the radial and axial velocity components are 

r2UW = G, (A 1 )  
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~- 

(A 3) 
l d -  2u- uap 
- - (pwr +i(u2 + w2)  w r )  = - uw-- 
r dr r r d 0 .  

We compare (A 1)-(A 3) with the equations for temperatixre flux, for balance of 
mean-square temperature fluctuations and for balance of turbulent kinetic energy in 
steady BBnard convection between parallel horizontal plancs : 

-dT d ~ 

we-+--(;we2) = o, 
dz dz 

d -  
dz 
-(pw+;(u2+v2+w2)w) = a g a ,  

where a is the coefficient of thermal expansion, T is the mean temperature a t  height 
z,  0 is the temperature fluctuation, w is the velocity fluctuation in the vertical 
direction, and Q is the temperature flux transmitted per unit length of ground. 
Molecular viscosity and conductivity is neglected. 

We choose G / r  to  be the analogue of Q ,  thus r G  is the analogue of a. If d( Ur)/dr 
is supposed to be the analogue of dT/dz, then we have to set 2U/r2 as the analogue 
of ag. This analogy is based on the assumption that the circumferential pressure 
gradient in circular Couette flow is negligibly small. 
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